Document Type
Thesis
Date of Award
Spring 5-31-1998
Degree Name
Master of Science in Materials Science and Engineering - (M.S.)
Department
Committee for the Interdisciplinary Program in Materials Science and Engineering
First Advisor
Roland A. Levy
Second Advisor
N. M. Ravindra
Third Advisor
Trevor Tyson
Abstract
This study is focussed on the synthesis and characterization of diamondlike carbon (DLQ films deposited on silicon wafers and glass by plasma enhanced chemical vapor deposition (PECVD), using acetylene (C2H4) as a precursor. The process parameters, such as temperature, pressure, power and reactant gas flow rate have been systematically varied and their effects on the film growth rate and properties were investigated. The optimized deposition condition appeared to be at 150°C, 200mTorr, 200 Watts and flow rate = 25 sccm. For these conditions, the films were hard and found to have good adhesion to the substrate, and resistant to BF etching (49% BY diluted to 10% with distilled water). It was found that the adhesion of the DLC film to the substrate is good if the substrate is first etched with oxygen and CF4 prior to the deposition.
Recommended Citation
Vishwanathan, Sriram, "Plasma enhanced chemical vapor deposition of diamondlike carbon films using acetylene" (1998). Theses. 907.
https://digitalcommons.njit.edu/theses/907