Document Type

Thesis

Date of Award

Fall 1-31-2000

Degree Name

Master of Science in Computer Science - (M.S.)

Department

Computer and Information Science

First Advisor

Richard B. Scherl

Second Advisor

James Geller

Third Advisor

Yehoshua Perl

Abstract

This thesis presents a method for assigning abstracts of Artificial Intelligence papers to their area of the field. The technique is implemented by the use of a Bayesian network where relevant keywords extracted from the abstract being categorized, are entered as evidence and inferencing is made to determine potential subject areas. The structure of the Bayesian network represents the causal relationship between Artificial Intelligence keywords and subject areas. Keyword components of the network are selected from precategorized abstracts. The work reported here is part of a larger project to automatically assign papers to reviewers for Artificial Intelligence conferences. The process of assigning papers to reviewers begins by using the inference system reported here to derive Artificial Intelligence subject areas for such papers. Based on those subjects, another module can select reviewers according to their specialization and limited by conflicts of interest.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.