Document Type
Thesis
Date of Award
Fall 1-31-2000
Degree Name
Master of Science in Computer Science - (M.S.)
Department
Computer and Information Science
First Advisor
Richard B. Scherl
Second Advisor
James Geller
Third Advisor
Yehoshua Perl
Abstract
This thesis presents a method for assigning abstracts of Artificial Intelligence papers to their area of the field. The technique is implemented by the use of a Bayesian network where relevant keywords extracted from the abstract being categorized, are entered as evidence and inferencing is made to determine potential subject areas. The structure of the Bayesian network represents the causal relationship between Artificial Intelligence keywords and subject areas. Keyword components of the network are selected from precategorized abstracts. The work reported here is part of a larger project to automatically assign papers to reviewers for Artificial Intelligence conferences. The process of assigning papers to reviewers begins by using the inference system reported here to derive Artificial Intelligence subject areas for such papers. Based on those subjects, another module can select reviewers according to their specialization and limited by conflicts of interest.
Recommended Citation
Ramirez, William, "Automatic categorization of abstracts through Bayesian networks" (2000). Theses. 784.
https://digitalcommons.njit.edu/theses/784