Document Type

Thesis

Date of Award

Spring 5-31-2000

Degree Name

Master of Science in Electrical Engineering - (M.S.)

Department

Electrical and Computer Engineering

First Advisor

William N. Carr

Second Advisor

Roy H. Cornely

Third Advisor

Edip Niver

Abstract

The objective of this thesis is to design a programmable wafer testing array on a single chip based on micro electromechanical systems (MEMS) and VLSI. The wafer-scale integration in this thesis is a programmable array of test probes that are used for engineering test of VLSI and ULSI silicon integrated circuits at the wafer level. This consists of two subsystems (1) the VLSI address circuits used for addressing and controlling the MEMS on the chip and (2) the latching probe MEMS microstructure array that actuates into position for testing VLSI wafers. Each of the subsystems have been designed, analyzed and simulated separately. These structures were then integrated into a demonstration 4x4 array forming a programmable probe card. A 3-micrometer critical dimension is used for both the VLSI CMOS and the MEMS physical design layouts. The fabrication technique for the MEMS microstructure is detailed. A standard 12-mask CMOS technology is used for the fabrication of the address circuits.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.