Document Type

Thesis

Date of Award

Summer 8-31-2004

Degree Name

Master of Science in Computational Biology - (M.S.)

Department

College of Computing Sciences

First Advisor

Qun Ma

Second Advisor

Usman W. Roshan

Third Advisor

Frank Y. Shih

Abstract

Support Vector Machine (SVM) is a supervised machine learning technique being widely used in multiple areas of biological analysis including microarray data analysis. SlimSVM has been developed with the intention of replacing OSU SVM as the classification component of GenoIterSVM in order to make it independent of other SVM packages. GenolterSVM, developed by Dr. Marc Ma, is a SVM implementation with an iterative refinement algorithm for improved accuracy of classification of genotype microarray data. SlimSVM is an object-oriented, modular, and easy-to-use implementation written in C++. It supports dot (linear) and polynomial (non-linear) kernels. The program has been tested with artificial non-biological and microarray data. Testing with microarray data was performed to observe how SlimSVM handles medium-sized data files (containing thousands of data points) since it would ultimately be used to analyze them. The results were compared to those of LIBSVM, a leading SVM software, and the comparison demonstrates that implementation of SlimS VM was carried out accurately.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.