Document Type

Thesis

Date of Award

Spring 5-31-2004

Degree Name

Master of Science in Electrical Engineering - (M.S.)

Department

Electrical and Computer Engineering

First Advisor

Roy H. Cornely

Second Advisor

Durgamadhab Misra

Third Advisor

Marek Sosnowski

Fourth Advisor

Leonid Tsybeskov

Abstract

Semiconductor random access memories are complex systems that can be described by performance parameters such as memory cycle time, access delays, storage capacity, bit packing density, chip area and retention time. In this thesis, tradeoffs between cycle time, chip area, and storage size as reflected by bit line capacitance (Cbl) were studied as a function of particular design variables: memory cell capacitance (Cc); CMOS flip-flop sense amplifier (SA) transistor sizes; and size of precharge (PC), and word line (WL) switches. Performance was optimized using circuit simulation software, HSPICE, to observe DRAM and SRAM waveforms. With TSMC 0.18 micron technology, minimum cycle times of 2.1 ins (DRAM) and 1.1 8ns (SRAM) were achieved (Cbl = 100FF), by optimizing the kr values of the SA transistors, for a fixed SA area of 1 micrometer and finding the optimum PC switch width (1 .6 micrometer). To maintain the same cycle time when the Cbl of both SRAM and DRAM increased by N, the required total chip area was found to be increased by N2. For a constant memory capacity, the ratio of the change in the sense amplifier area to the change in memory cycle time for DRAM was found to be between 1.25 to three times that of SRAM, varying somewhat with cycle time. To optimize SRAM cycle time, the criteria of a bit line difference of 10% of 3V determined the time to terminate the connection of the bit line to the SRAM cell so as to avoid the loading of the parasitic Cc cell by the larger Cbl.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.