Document Type

Thesis

Date of Award

Fall 1-27-2008

Degree Name

Master of Science in Biomedical Engineering - (M.S.)

Department

Biomedical Engineering

First Advisor

Tara L. Alvarez

Second Advisor

Bharat Biswal

Third Advisor

Max Roman

Abstract

In this study, five different linear parametric models including Autoregressive model (ARX), Autoregressive Moving Average Model (ARMAX), Box-Jenkins Model (BJ), Instrument Variable Model (IV) and Prediction Error Model (PEM) were used to predict the fMRI response and their performances compared. Transfer functions were computed for every voxel time series for every subject using all the parametric models. Cross-correlation was subsequently performed between the predicted response and the actual fMRI data to compare the performance of the five models. The consistency of the models and the transfer function was checked by doing a statistical analysis. Among the five models tested, PEM resulted in the highest correlation coefficient of 0.76 with the measured response, while ARX, which was the simplest of all, gave the least correlation coefficient of 0.23 with the measured response. The PEM model was consistent in predicting the response between the subjects compared to all other models. A significant difference between the PEM model versus the other models was observed for all the subjects.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.