Document Type

Thesis

Date of Award

Fall 1-31-2014

Degree Name

Master of Science in Materials Science and Engineering - (M.S.)

Department

Committee for the Interdisciplinary Program in Materials Science and Engineering

First Advisor

N. M. Ravindra

Second Advisor

Halina Opyrchal

Third Advisor

Tao Zhou

Fourth Advisor

Ken Keunhyuk Ahn

Abstract

Utilizing the two-band approximation and Wentzel-Kramers-B ri l l oui n (WKB) approximation, by including the temperature-dependent effective masses and nonparabolicity effects, an investigation of the temperature dependent band-to-band tunneling process is discussed. In comparison with the parabolic approximation and non- parabolic approximation, the tunneling probability is strongly dependent on the non-parabolicity factor. The temperature dependence of the energy band gap, electron effective mass and light hole effective mass is investigated. The tunneling current density function is derived by a series representation of the incomplete gamma function with non-parabolic effect and its variation at low temperature is also investigated. When the Fermi level of holes is in excess of that of electrons, i.e., EFp>>EFn, the current density function can be successfully simplified as the Fowler-Nordheim formulation. The quantum efficiency model, for CIGS solar cells, is discussed. Device modeling and simulation studies of a Cu(In1-x,Gax)Se2 (CIGS) thin film solar cell are carried out. A variety of graded band-gap structures, including space charge region (SCR) grading, back surface region grading, and double grading of the CIGS absorber layer are considered. A position-dependent absorption coefficient α(x, hv) is obtained by a differential equation for the photon flux φ(x, hv). The quantum efficiency can be calculated by IQE=(φ1-φ2)/φ3. The temperature dependence of the quantum efficiency is also investigated in this thesis.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.