Document Type
Thesis
Date of Award
Fall 1-31-2014
Degree Name
Master of Science in Mechanical Engineering - (M.S.)
Department
Mechanical and Industrial Engineering
First Advisor
Anthony D. Rosato
Second Advisor
Pushpendra Singh
Third Advisor
Shawn Alexander Chester
Fourth Advisor
David James Horntrop
Abstract
Granular systems are widely present in the world. Soil, pharmaceutical pills, and silos filled with grain all are examples of granular systems. Experiments have long established an empirical understanding of granular systems, but an analytical understanding has been much more difficult to establish. One of the behaviors of a granular system that is well documented but poorly understood is the change in density the system undergoes when excited, also known as the densification process.
This thesis investigates the densification process of a tapped granular system using Discrete Element Model (DEM) simulations. Contact interactions in the simulations obey a well-established inelastic soft-sphere model. The computational volume consists of a rectangular parallelepiped with a square base that is 12 particle diameters wide and filled with 3456 spheres. A focus of this work is on understanding the influence of the walls on the densification process.
Several systems are observed to stay in a metastable state for thousands of taps before further densification occurs. In addition, bulk lateral movement or drift of the sphere assembly is detected after evolving to maximally dense state, even though the particles come to a complete rest between taps. Simulations conducted with solid lateral walls suggest a reduced rate of densification as compared to the periodic systems, which is hypothesized to be caused in part by a motion restriction of the spheres imposed by the solid walls.
Recommended Citation
Ching, Nathaniel, "Influence of lateral boundaries in tapped densification of granular materials" (2014). Theses. 1714.
https://digitalcommons.njit.edu/theses/1714