Document Type
Thesis
Date of Award
1994
Degree Name
Master of Science in Chemical Engineering - (M.S.)
Department
Chemical Engineering, Chemistry and Environmental Science
First Advisor
Henry Shaw
Second Advisor
Barbara B. Kebbekus
Third Advisor
Robert J. Farrauto
Abstract
This study addresses the ability of powdered transition metal oxides such as manganese oxide, iron oxide and copper oxide to catalytically oxidize low concentrations of chlorinated hydrocarbons with air. The catalytic oxidation of trichloroethylene and dichloromethane in a tubular reactor system was evaluated experimentally as a function of temperature and space velocity. Gas chromatography with electron capture detector and flame ionization detector was used for quantitative analysis of feed and product streams. Gas chromatography/mass spectrometry and gas chromatography/Fourier transform infrared spectroscopy were used to identify all oxidation products. The results indicate that over 99% conversion of trichloroethylene is achieved at 915 K over fresh iron oxide, 96% conversion of trichloroethylene is achieved at 970 K over fresh copper oxide and 74% conversion of dichloromethane is achieved at 700 K over fresh manganese oxide. The major products from the oxidation of trichloroethylene over iron oxide are CO2, Cl2 and HCl, with trace amounts of CCl4, C2Cl4 and CO.
Recommended Citation
Xu, Sanmei, "Catalytic oxidation of chlorinated hydrocarbons over powdered transition metal oxide" (1994). Theses. 1695.
https://digitalcommons.njit.edu/theses/1695