Document Type

Thesis

Date of Award

Spring 5-31-1994

Degree Name

Master of Science in Computer Science - (M.S.)

Department

Computer and Information Science

First Advisor

Lonnie R. Welch

Second Advisor

James A. McHugh

Third Advisor

David Nassimi

Abstract

Exact enumeration of self-avoiding walk on many lattices have been studied extensively recently. Even a short chain polymer (about 30 monomers) represented as a chain of cubic lattice sites requires a considerable amount of computer time to exhaustively search for all unique conformations. However, self-avoiding walk process can be modified such that it exhibits a high degree of independence among subprocesses. Parallel implementation of such subprocesses can reduce a great amount of enumeration time. Parallel enumeration makes longer chain enumeration possible.

Enumerating only unique conformations requires that all rotation and mirror conformations be removed. An algorithm to avoid generating such symmetrical conformations is presented. A set of parallel algorithms to solve exact enumeration of cubic lattice graphs subjected to various constraints (volume and/or contact constraints) is presented. The speed up and communication cost are analyzed. One of the most important application of lattice enumeration, enumerative kinetics of protein folding, is also discussed.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.