Document Type

Thesis

Date of Award

Spring 5-31-2019

Degree Name

Master of Science in Computer Science - (M.S.)

Department

Computer Science

First Advisor

James Geller

Second Advisor

Soon Ae Chun

Third Advisor

Senjuti Basu Roy

Abstract

Ever since Russian trolls have been brought into light, their interference in the 2016 US Presidential elections has been monitored and studied thoroughly. These Russian trolls have fake accounts registered on several major social media sites to influence public opinions. Our work involves trying to discover patterns in these tweets and classifying them by using different machine learning approaches such as Support Vector Machines, Word2vec and neural network models, and then creating a benchmark to compare all the different models. Two machine learning models are developed for this purpose. The first one is used to classify any given specific tweet as either troll or non-troll tweet. The second model classifies specific tweets as coming from left trolls or right trolls, based on apparent extreme political orientation. Several kinds of statistical analysis on these tweets are performed based on the tweets and their classifications. Further, an analysis of the machine learning algorithms, using several performance criteria, is presented.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.