Document Type

Thesis

Date of Award

Fall 12-31-2018

Degree Name

Master of Science in Electrical Engineering - (M.S.)

Department

Electrical and Computer Engineering

First Advisor

Dong Kyun Ko

Second Advisor

Haim Grebel

Third Advisor

Hieu Pham Trung Nguyen

Abstract

There is an acute market need for solution-processable semiconductor inks that can form the essential components of the printed analog and digital circuits. Currently, the industry is migrating beyond simply printing conductive metals for interconnects and embracing higher integration by printing transistors directly on the same substrate. This thesis focuses on investigating solution-processed amorphous indium gallium zinc oxide (IGZO) as a semiconducting channel layer of a field-effect transistor to enable low-cost, large-area printed electronics that are physically flexible and optically transparent. Specifically, we aim to achieve field-effect mobility exceeding 1 cm2/Vs, to overcome the limits faced in existing amorphous silicon and emerging organic transistor technologies, through optimizing IGZO ink and studying various thin-film processing conditions. Device approach using solution-processed, high-K aluminum oxide dielectric layer has also been examined in this study. In addition, the effect of low-temperature UV-assisted annealing has been studied which allow the fabrication to be compatible with plastic substrates.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.