Document Type

Thesis

Date of Award

Summer 2018

Degree Name

Master of Science in Applied Physics - (M.S.)

Department

Physics

First Advisor

John Francis Federici

Second Advisor

Ian Gatley

Third Advisor

Haim Grebel

Abstract

As the application of the Terahertz (THz) band (0.1 - 10 THz) is investigated in various settings, wireless communication stands out as an important frontier to explore. The benefits of increased bandwidth and data rates it promises will only be realized if new technology is developed to support it. Specifically, since THz wireless communication links are typically line-of-sight (LoS), the LoS can be blocked by moving obstacles, thereby requiring alternative link paths. One proposed solution for indoor wireless communications involves systems of steerable antennas, reflective "wallpaper", and steerable mirrors which would redirect THz beams around a blocking obstacle.

As an initial step in developing steerable mirrors for THz wireless systems, this thesis describes the development of a passive planar terahertz retroreflector based on the Van Atta array. The retroreflector is optimized and simulated using FEM software, fabricated via a low-cost additive manufacturing method, and characterized using terahertz time-domain spectroscopy. Comparison to a flat metal plate shows an increase in monostatic RCS for off-normal angles of incidence.

Included in

Other Physics Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.