Document Type

Thesis

Date of Award

Spring 5-31-2013

Degree Name

Master of Science in Materials Science and Engineering - (M.S.)

Department

Committee for the Interdisciplinary Program in Materials Science and Engineering

First Advisor

John Francis Federici

Second Advisor

N. M. Ravindra

Third Advisor

Robert Benedict Barat

Abstract

Comparing THz transmission through a sample with the transmission through free-space allows one to calculate the THz absorbance of a sample. Previous studies have focused on using THz absorbance to measure the diffusion of liquid through materials. In this study, the ability of THz spectroscopy to measure the flow of gas in a porous material, packaging foam, is investigated. Specifically, Terahertz spectroscopy from 0.5 to 0.7 THz is used to measure the THz absorption of 1, 1 -difluoroethane. Several experiments are performed to test the ability of THz spectroscopy to measure the flow of gas in a porous material: (1) The gas cell is empty (no foam) during the filling and purging of the gas cell. (2) Two layers of foam are put in the gas cell. The gas outlet at the bottom of the gas cell is left open. (3) Two layers of foam are placed in the gas cell. In this condition, the gas outlet at the bottom of the cell is left only partially open. The data shows that THz spectroscopy can be used to measure the flow of gas in opaque porous materials. The longer term goal of thesis research is to eventually use the THz properties of the gas to measure its diffusion through different porous products and correlate the gas diffusion with the material’s structure.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.