Document Type

Thesis

Date of Award

Fall 1-31-1994

Degree Name

Master of Science in Electrical Engineering - (M.S.)

Department

Electrical and Computer Engineering

First Advisor

Stanley S. Reisman

Second Advisor

Peter Engler

Third Advisor

Thomas W. Findley

Abstract

The basic concepts and fundamentals of the wavelet signal representation were examined. The orthonormal wavelet was selected for this project after being compared to various types of wavelets. The orthonormal wavelet was chosen due to the equal time and frequency resolution exhibited in the wavelet coefficients. Programs were written in Matlab to implement the orthonormal wavelet in developing wavelet coefficients for a given signal. The programs include the conditions for an orthonormal wavelet in and which produce the wavelet filters g(n) and h(n). The wavelet filters were then incorporated into another program that applied Mallat's multiresolution algorithm for a given signal. The resulting wavelet coefficients were obtained and interpreted. The orthonormal wavelet was applied to various types of biomedical signals. The wavelet transform was applied to motor evoked potentials (MEPs) created cortical magnetic stimulation. The wavelet was also applied to evoked potentials (EPs) and to various types of EKG signals. The wavelet representation exposed new ways of observing biomedical signals by bringing out details and structures not present in the original waveforms.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.