Document Type
Thesis
Date of Award
Fall 1-31-1995
Degree Name
Master of Science in Applied Physics - (M.S.)
Department
Physics
First Advisor
William N. Carr
Second Advisor
N. M. Ravindra
Third Advisor
Kenneth Rudolph Farmer
Abstract
In this thesis, the design and fabrication of a bulk micromachined and wafer bonded pressure sensor for high temperature applications is described. The device design is based on the magnetic coupling principle as described by the Biot-Savart law. By combining the mechanical properties of single crystal silicon with magnetic coupling, the designed sensor can be operated up to 600°C. The key components within the sensor are two inductive coils, a silicon diaphragm and a hermetic vacuum cavity.
The modeling based on a nine-turn single level coil device and a 300 μm x 300 diaphragm indicates an output rms voltage range of 70 mV with an input current of 100 mA and frequency of 200 MHz at pressures ranging from 0 kPa to 300 kPa for a sensitivity of 11 μV/mA.MHzkPa at 300°C. The output voltage doubles to 150 mV at 600 °C for the same pressure range. Experiments on 6-turn single-level aluminum foil coils showed a linear decrease in output with the reduction in coil dimensions as the Young's modulus decreases. Experiments indicate that double-level or multi-level coils give substantially larger output.
The sensor fabrication plan combines standard IC processing, anistropic etch of silicon and silicon wafer bonding. A KOH solution is used to etch the silicon and define the diaphragm. The diaphragm is formed by a boron diffusion technique. The diaphragm thickness is controlled by the diffusion depth and etch-stop technology. The silicon wafer bonding uses sputtered Pyrex as an intermediate adhesive layer. Pyrex has good thermal expansion of coefficient with that of silicon. This would ensure a good thermal match between the silicon and glass together with a good thermal stability at high temperatures.
Recommended Citation
Zhu, Deguang, "A high temperature pressure sensor based on magnetic coupling and silicon wafer bonding" (1995). Theses. 1209.
https://digitalcommons.njit.edu/theses/1209