Document Type

Thesis

Date of Award

Fall 1-31-1995

Degree Name

Master of Science in Biomedical Engineering - (M.S.)

Department

Biomedical Engineering Committee

First Advisor

Andrew Ulrich Meyer

Second Advisor

Edward Joseph Haupt

Third Advisor

David S. Kristol

Abstract

The use of signal modeling of the oscillatory potential (OP) of the electroretinogram (ERG), in the study of cone-rod interaction is investigated. ERG response data were analyzed for red, orange, blue and white flashes on no background and with red flashes on a blue background (to suppress rod responses). The OP signals were extracted from the ERG by digital bandpass filtering and a signal model was fitted through a simplex algorithm to produce the parameters including "OP envelope-amplitude", latency in terms of "center-time" of the OP-envelope and OP frequency. Amplitude for red flashes with or without a blue background showed similar increases at high stimulus intensities. White and orange flashes produced higher amplitudes at all stimulus intensities, thus demonstrating the presence of rod OP within the signal. Latencies changed relatively little for pure cone stimuli with increasing intensities, while latency sharply reduced for responses for blue stimuli. Use of signal modeling provides a simple procedure for summarizing the characteristics of the OP in rods and cones over a range of amplitudes.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.