Document Type
Thesis
Date of Award
Spring 5-31-1995
Degree Name
Master of Science in Biomedical Engineering - (M.S.)
Department
Biomedical Engineering Committee
First Advisor
Stanley S. Reisman
Second Advisor
David S. Kristol
Third Advisor
Thomas W. Findley
Abstract
The objectives of this study were to evaluate if muscle fiber conduction velocity (MFCV) could be used as a reliable indicator of fatigue and to characterize the recovery of MFCV after a fatiguing contraction. The decline of MFCV with fatigue was modelled using linear regression and compared with the decline in median frequency (MF). It was found that the percent decline in MF with fatigue was greater than that of MFCV with fatigue and that the decline of MFCV was consistent in all subjects tested. It was thus determined that MFCV could be used as a reliable indicator of fatigue. Possible explanations for the recovery of MFCV after fatigue were given. The recovery curves for all subjects were curve fit using the exponential peeling technique. A comparison of the time constants showed that 8 out of 9 subjects had values between 2-4 minutes, indicating that the recovery process had a similar response in these 8 subjects.
Decomposition of the EMG is a useful tool which helps us better understand the functioning of the neuromuscular system. An algorithm was developed to decompose the EMG into its constituent motor units based on the work done by Deluca et al. Preliminary results were obtained. However, further research is needed in this area.
Recommended Citation
Swaminathan, Satheesh Kumar, "Application of signal processing techniques for measurement of muscle fiber conduction velocity" (1995). Theses. 1145.
https://digitalcommons.njit.edu/theses/1145