Document Type
Thesis
Date of Award
Spring 5-31-1995
Degree Name
Master of Science in Environmental Engineering - (M.S.)
Department
Civil and Environmental Engineering
First Advisor
John R. Schuring
Second Advisor
Paul C. Chan
Third Advisor
Victor Ososkov
Abstract
This thesis investigates conceptual integration of the Pneumatic Fracturing (PF) process with In Situ Vitrification (ISV) for remediation of contaminated soil. Integration will permit ISV melts to be initiated below the ground surface and extend the depth of the ISV process.
Bench scale experiments were conducted in 4.9 ft3 (0.14 m3) Plexiglas tanks filled with a test soil that was specifically blended to simulate the Hanford Formation in Richland, WA. Discrete pneumatic fractures were successfully created and filled with the ISV starter path material. Conductivity measurements made across two graphite electrodes exhibited a pre-fracture soil resistance of 427 ohms, which was reduced to an average of 0.80 ohms after fracture injection.
A model was developed to predict transport distance of the ISV starter path media in pneumatically induced fractures. The model estimates fracture propagation distance using a finitedifference approach, as well as the critical fluid velocity necessary to keep the starter path media suspended, Model calculations show the effective radius of the integrated process should range up to several meters in the Hanford Formation. The thesis concludes with operational recommendations for full scale application.
Recommended Citation
McGonigal, Sean Thomas, "Integration of pneumatic fracturing and in situ vitrification in coarse grained soils" (1995). Theses. 1135.
https://digitalcommons.njit.edu/theses/1135