Document Type

Thesis

Date of Award

Spring 5-31-1996

Degree Name

Master of Science in Applied Physics - (M.S.)

Department

Physics

First Advisor

Kenneth Rudolph Farmer

Second Advisor

Ken K. Chin

Third Advisor

N. M. Ravindra

Abstract

Emerging trends in the semiconductor device industry call for detailed knowledge of the properties of devices whose dimensions are small enough to exploit Quantum Mechanical effects. This thesis presents a complete picture of oxide degradation in MOS direct tunnel diodes (t0 <3.4 nm). It is demonstrated that for structures fabricated at different facilities and stressed with either gate or substrate injection, a universal degradation mode is revealed which is manifested as the build up of positive charge in the oxide. The data gathered demonstrates that the positive charging phenomena in sub-3.5 nm oxides is independent of oxide thickness, and is characterized by a voltage threshold and two-regime temperature dependence. Further, the catastrophic failure, or breakdown, of these oxides was studied and the strongest evidence to date is presented which links the positive charging phenomena to the oxide breakdown. This thesis concludes with the presentation of a novel device design which can exploit the properties of degradation and breakdown, in thin oxides, to achieve an EEPROM memory cell of superior endurance.

Included in

Other Physics Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.