Enhancing KDM5A and TLR activity improves the response to immune checkpoint blockade

Document Type

Article

Publication Date

9-1-2020

Abstract

Immune checkpoint blockade (ICB) therapies are now established as first-line treatments for multiple cancers, but many patients do not derive long-term benefit from ICB. Here, we report that increased amounts of histone 3 lysine 4 demethylase KDM5A in tumors markedly improved response to the treatment with the programmed cell death protein 1 (PD-1) antibody in mouse cancer models. In a screen for molecules that increased KDM5A abundance, we identified one (D18) that increased the efficacy of various ICB agents in three murine cancer models when used as a combination therapy. D18 potentiated ICB efficacy through two orthogonal mechanisms: (i) increasing KDM5A abundance, which suppressed expression of the gene PTEN (encoding phosphatase and tensin homolog) and increased programmed cell death ligand 1 abundance through a pathway involving PI3K-AKT-S6K1, and (ii) activating Toll-like receptors 7 and 8 (TLR7/8) signaling pathways. Combination treatment increased T cell activation and expansion, CD103 tumor-infiltrating dendritic cells, and tumor-associated M1 macrophages, ultimately enhancing the overall recruitment of activated CD8+ T cells to tumors. In patients with melanoma, a high KDM5A gene signature correlated with KDM5A expression and could potentially serve as a marker of response to anti-PD-1 immunotherapy. Furthermore, our results indicated that bifunctional agents that enhance both KDM5A and TLR activity warrant investigation as combination therapies with ICB agents.

Identifier

85090816918 (Scopus)

Publication Title

Science Translational Medicine

External Full Text Location

https://doi.org/10.1126/SCITRANSLMED.AAX2282

e-ISSN

19466242

ISSN

19466234

PubMed ID

32908002

Issue

560

Volume

12

Grant

21877067

Fund Ref

National Natural Science Foundation of China

This document is currently not available here.

Share

COinS