Date of Award

Spring 1997

Document Type

Thesis

Degree Name

Master of Science in Electrical Engineering - (M.S.)

Department

Electrical and Computer Engineering

First Advisor

Roy H. Cornely

Second Advisor

Haim Grebel

Third Advisor

Constantine N. Manikopoulos

Abstract

The performance parameters (responsivity (Rv). detectivity (D*), total noise and response time) of resistive, pyroelectric and ferroelectric bolometer detectors are dependent on a large number of key variables including chopping frequercy, the input impedance and voltage noise of the readout circuitry, the structure dependent parameters (particularly thermal conductance and thermal capacitance), and material properties such as dielectric constant, pyroelectric coefficient, loss tangent and thin film thickness. The interrelationship between the key variables and their influence on performance is often complex and not easily discerned for the three major types of thermal detectors: resistive, pyroelectric and ferroelectric bolometers.

In this thesis research, the dependence of Rv, D* and total noise on these key parameters were analyzed and written as equations from which computer calculations could easily be made. The analyzed results were used to compare the pertbrmance of the three types of sensors for present-day structure and material characteristics and also for material characteristics and structures that night be developed in the future.

Share

COinS