Document Type

Thesis

Date of Award

Spring 5-31-1999

Degree Name

Master of Science in Electrical Engineering - (M.S.)

Department

Electrical and Computer Engineering

First Advisor

Timothy Nam Chang

Second Advisor

Andrew Ulrich Meyer

Third Advisor

Edwin Hou

Abstract

Control application for active damping of structural vibrations and acoustic noise in mechanical systems is one of the engineering fields that can benefit from advances made in digital signal processors. This thesis project is one such application. It is about a vibration control at the loading point of a high speed linear robotic workcell. A lead zirconate titanate piezoelectric ceramic is used as the actuator and an accelerometer provides the sensing. From experimentally measured frequency response of this system, a shaping filter is designed and added on. The reshaped system is fitted with a third order transfer function design model. And based on this model, a discrete-time control scheme designated “servocompensator” is designed and implemented on a Digital Signal Processing board to control structural vibrations on the robotic workcell. Servocompensator is a control scheme based on the principle of Internal Model Design.

The results have demonstrated the servocompensator as a powerful scheme for controlling independently the individual modes within the spectrum of a given vibration signal. In a typical result, as much as 40 dB of attenuation is produced on the targeted mode, where 0 dB is equal to 1 g of acceleration in this application. Furthermore, with the multi-tasking capability of the digital hardware, multiple mode control is demonstrated by multiplexing a number of single-mode servocompensators.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.