Date of Award

Spring 2004

Document Type

Thesis

Degree Name

Master of Science in Biomedical Engineering - (M.S.)

Department

Biomedical Engineering

First Advisor

Michael Jaffe

Second Advisor

Charles J. Prestigiacomo

Third Advisor

Michael Chien-Yueh Huang

Fourth Advisor

Treena Livingston Arinzeh

Abstract

Electrospinning processes apply electric fields to a polymer solution in order to produce strands of polymer in the nanoscale range. These polymer fibers are manipulated for their porosity, high surface area, fineness and uniformity. In order to create the ideal drug delivery system for intracranial arteriovenous malformations (AVMs) and tumors, D, L poly-(lactice-poly-glycolide) (DLPLGA) nanofibers were electrospun in a tetrahydrofuran (THF) solvent. Three different concentration ratios of DLPLGA, 85/15, 80/20, and 75/25 were analyzed to obtain the prime base for drug annexation. 1 ,3-bis (2-chloroethyl)- 1 -nitrosourea (BCNU) was then codissolved with the DLPLGA nanofibers to form a homogenous solution, electrospun, and analyzed for drug characterization.

The SEM analysis showed that fiber diameter is not a function of drug presence. The IGA graphs showed little variation in mass loss in comparing the electrospun fiber to the drug combined fiber. The DSC analysis provided a Tg value around 48-53 degrees Celcius for both the raw polymer and the electrospun fiber. This provided proof that the electrospinning process does not affect the chemical nature of the polymer. The presence of BCNU on the polymer (chose 80/20-l0wt%) was determined by the change in Tg observed on the DSC graphs from a value of 48-53 degrees celcius to two values of 12.69 degrees celcius and 1 8.94 degerees celcius.

Share

COinS