Date of Award

Fall 2003

Document Type

Thesis

Degree Name

Master of Science in Biomedical Engineering - (M.S.)

Department

Biomedical Engineering

First Advisor

Stanley S. Reisman

Second Advisor

David S. Kristol

Third Advisor

Ronald H. Rockland

Abstract

Sleep apnea is a disorder, where there are repetitive pauses in respiratory flow of at least 10 seconds or longer duration, and which occur more than five times per hour. Apnea has strong modulating effects on the autonomic nervous system, with prominent heart rate variation. It can be assumed that during sleep, internal influences (sympathetic and parasympathetic nervous system activities) dominate the autonomic nervous system; in addition repetitive apneas are accompanied by a pronounced increase in average heart rate. The aim of this study was to investigate the heart rate variability using spectral analysis and time-frequency analysis during sleep apnea.

A total of 22 subjects (18 males and 4 females, 49 ± 20 years) were studied who were experiencing both obstructive sleep apnea and central sleep apnea in whom sleep-disordered breathing was diagnosed. In addition 6 control subjects were studied where sleep apnea was not expected. Spectral and wavelet analysis were used to investigate the heart rate variability from the sleep apnea subjects and control subjects. The results of the wavelet analysis gave information about the parasympathetic (HF) and sympatho-vagal balance (LF: HF) changes as a function of time and frequency. The spectral parameters LF, HF and LF/HF confirmed reduced parasympathetic activity in patients with sleep apnea compared to normal subjects. In addition the repetitive apneas are accompanied by a pronounced increased cyclic variation of heart rate.

Share

COinS