Document Type


Date of Award

Fall 1-27-2008

Degree Name

Master of Science in Biomedical Engineering - (M.S.)


Biomedical Engineering

First Advisor

Sergei Adamovich

Second Advisor

Tara L. Alvarez

Third Advisor

Bharat Biswal


MRL has fast become the modality of choice for the analysis of the complexity of the human brain. MRJ is a non-invasive method and gives high spatial resolution maps of the brain with soft tissue contrast. Conventional MRI technique modified to be used to image the functionality at high temporal resolution is known as fMRI. In fMRI the BOLD signal we measure is the hemodynamic response to neuronal and vascular changes at rest or in response to a stimulus where the various tissue types will have a different response.

While fMRI has been traditionally been used to detect and identify eloquent regions of the cortex corresponding to specific tasks/stimulus, a number of groups have also used tMRI to study cerebrovascular changes and its consequence on the BOLD signal. A number of different perturbation methods including breath holding, hypercapnia, inhalation of various gas mixtures, and injection of acetozolamyde has been used to study spatio-temporal changes in the fMRI signal intensity. Spatiotemporal changes corresponding to changes in cerebral blood flow (CBF), cerebral blood volume (CBV), oxygen extraction fraction (OEF), and other physiological factors are then estimated and differences between diseased regions and healthy regions are then elucidated.