Document Type

Thesis

Date of Award

Spring 5-31-2015

Degree Name

Master of Science in Materials Science and Engineering - (M.S.)

Department

Committee for the Interdisciplinary Program in Materials Science and Engineering

First Advisor

N. M. Ravindra

Second Advisor

Siva P.V. Nadimpalli

Third Advisor

Michael Jaffe

Fourth Advisor

Peter Kaufman

Abstract

Magnetic Augmented Rotation System (MARS) works by magnetic field coupling, to transfer torque from the driver to the rotor without contact. This characteristic has significant applications to the wind turbine but research in combination of MARS and wind turbine has not been done in the literature. In this thesis, a small-scale wind turbine is designed, built and characterized in a prototype wind tunnel. The test results are analyzed and computer-aided software simulation is used as an auxiliary method to understand the mechanism of MARS. The power coefficient of this new wind turbine is estimated to be about 40%. The “gear ratio” is proportional to the magnetic poles. The magnetic coupling transfers torque well.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.