Date of Award

12-31-2020

Document Type

Thesis

Degree Name

Master of Science in Transportation - (M.S.)

Department

Civil and Environmental Engineering

First Advisor

Joyoung Lee

Second Advisor

Guiling Wang

Third Advisor

Branislav Dimitrijevic

Abstract

Precisely predicting the duration time of an incident is one of the most prominent components to implement proactive management strategies for traffic congestions caused by an incident. This thesis presents a novel method to predict incident duration time in a timely manner by using an emerging supervised topic modeling method. Based on Natural Language Processing (NLP) techniques, this thesis performs semantic text analyses with text-based incident dataset to train the model. The model is trained with actual 1,466 incident records collected by Korea Expressway Corporation from 2016-2019 by applying a Labeled Latent Dirichlet Allocation(L-LDA) approach. For the training, this thesis divides the incident duration times into two groups: shorter than 2-hour and longer than 2-hour, based on the MUTCD incident management guideline. The model is tested with randomly selected incident records that have not been used for the training. The results demonstrate that the overall prediction accuracies are approximately 74% and 82% for the incidents shorter and longer than 2-hour, respectively.

Share

COinS