Document Type


Date of Award

Spring 1994

Degree Name

Master of Science in Electrical Engineering - (M.S.)


Electrical and Computer Engineering

First Advisor

Yeheskel Bar-Ness

Second Advisor

Alexander Haimovich

Third Advisor

Zoran Siveski


To increase the rate of convergence of the blind, adaptive, decision feedback equalizer based on the decorrelation criterion, structures have been proposed which dramatically increase the complexity of the equalizer. The complexity of an algorithm has a direct bearing on the cost of implementing the algorithm in either hardware or software. In this thesis, more computationally efficient structures, based on the fast transversal filter and lattice algorithms, are proposed for the decorrelation algorithm which maintain the high rate of convergence of the more complex algorithms. Furthermore, the performance of the decorrelation algorithm in a finite-precision environment will be studied and compared to the widely used LMS algorithm.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.