Automatic liver segmentation from abdominal CT volumes using graph cuts and border marching
Document Type
Article
Publication Date
5-1-2017
Abstract
Background and Objective Identifying liver regions from abdominal computed tomography (CT) volumes is an important task for computer-aided liver disease diagnosis and surgical planning. This paper presents a fully automatic method for liver segmentation from CT volumes based on graph cuts and border marching. Methods An initial slice is segmented by density peak clustering. Based on pixel- and patch-wise features, an intensity model and a PCA-based regional appearance model are developed to enhance the contrast between liver and background. Then, these models as well as the location constraint estimated iteratively are integrated into graph cuts in order to segment the liver in each slice automatically. Finally, a vessel compensation method based on the border marching is used to increase the segmentation accuracy. Results Experiments are conducted on a clinical data set we created and also on the MICCAI2007 Grand Challenge liver data. The results show that the proposed intensity, appearance models, and the location constraint are significantly effective for liver recognition, and the undersegmented vessels can be compensated by the border marching based method. The segmentation performances in terms of VOE, RVD, ASD, RMSD, and MSD as well as the average running time achieved by our method on the SLIVER07 public database are 5.8 ± 3.2%, -0.1 ± 4.1%, 1.0 ± 0.5 mm, 2.0 ± 1.2 mm, 21.2 ± 9.3 mm, and 4.7 minutes, respectively, which are superior to those of existing methods. Conclusions The proposed method does not require time-consuming training process and statistical model construction, and is capable of dealing with complicated shapes and intensity variations successfully.
Identifier
85013969110 (Scopus)
Publication Title
Computer Methods and Programs in Biomedicine
External Full Text Location
https://doi.org/10.1016/j.cmpb.2017.02.015
e-ISSN
18727565
ISSN
01692607
PubMed ID
28391807
First Page
1
Last Page
12
Volume
143
Grant
2015RS4008
Fund Ref
National Natural Science Foundation of China
Recommended Citation
Liao, Miao; Zhao, Yu qian; Liu, Xi yao; Zeng, Ye zhan; Zou, Bei ji; Wang, Xiao fang; and Shih, Frank Y., "Automatic liver segmentation from abdominal CT volumes using graph cuts and border marching" (2017). Faculty Publications. 9615.
https://digitalcommons.njit.edu/fac_pubs/9615
