Sigma map dynamics and bifurcations
Document Type
Article
Publication Date
11-1-2017
Abstract
Some interesting variants of walking droplet based discrete dynamical bifurcations arising from diffeomorphisms are analyzed in detail. A notable feature of these new bifurcations is that, like Smale horseshoes, they can be represented by simple geometric paradigms, which markedly simplify their analysis. The two-dimensional diffeomorphisms that produce these bifurcations are called sigma maps or double sigma maps for reasons that are made manifest in this investigation. Several examples are presented along with their dynamical simulations.
Identifier
85037632950 (Scopus)
Publication Title
Regular and Chaotic Dynamics
External Full Text Location
https://doi.org/10.1134/S1560354717060107
e-ISSN
14684845
ISSN
15603547
First Page
740
Last Page
749
Issue
6
Volume
22
Grant
Cycle-47
Recommended Citation
Rahman, Aminur; Joshi, Yogesh; and Blackmore, Denis, "Sigma map dynamics and bifurcations" (2017). Faculty Publications. 9214.
https://digitalcommons.njit.edu/fac_pubs/9214
