Analysis of predictor variables for mosquito species identification from dual-wavelength polarization-sensitive lidar measurements

Document Type

Conference Proceeding

Publication Date

1-1-2018

Abstract

Mosquito-borne diseases are a major challenge for Human health as they affect nearly 700 million people every year. Monitoring insects is generally done through trapping methods that are tedious to set up, costly and present scientific biases. Entomological lidars are a potential solution to remotely count and identify mosquito species and gender in realtime. In this contribution, a dual-wavelength polarization sensitive lidar is used in laboratory conditions to retrieve the wingbeat frequency as well as optical properties of flying mosquitoes transiting through the laser beam. From the lidar signals, predictive variables are retrieved and used in a Bayesian classification. This paper focuses on determining the relative importance of the predictive variables used in the classification. Results show a strong dominance of the wingbeat frequency, the impact of predictive variables based on depolarization and backscattering ratios are discussed, showing a significant increase in classification accuracy.

Identifier

85058378693 (Scopus)

ISBN

[9781510621336]

Publication Title

Proceedings of SPIE the International Society for Optical Engineering

External Full Text Location

https://doi.org/10.1117/12.2323432

e-ISSN

1996756X

ISSN

0277786X

Volume

10779

This document is currently not available here.

Share

COinS