Distinguishing computer-generated graphics from natural images based on sensor pattern noise and deep learning
Document Type
Article
Publication Date
4-23-2018
Abstract
Computer-generated graphics (CGs) are images generated by computer software. The rapid development of computer graphics technologies has made it easier to generate photorealistic computer graphics, and these graphics are quite difficult to distinguish from natural images (NIs) with the naked eye. In this paper, we propose a method based on sensor pattern noise (SPN) and deep learning to distinguish CGs from NIs. Before being fed into our convolutional neural network (CNN)-based model, these images—CGs and NIs—are clipped into image patches. Furthermore, three high-pass filters (HPFs) are used to remove low-frequency signals, which represent the image content. These filters are also used to reveal the residual signal as well as SPN introduced by the digital camera device. Different from the traditional methods of distinguishing CGs from NIs, the proposed method utilizes a five-layer CNN to classify the input image patches. Based on the classification results of the image patches, we deploy a majority vote scheme to obtain the classification results for the full-size images. The experiments have demonstrated that (1) the proposed method with three HPFs can achieve better results than that with only one HPF or no HPF and that (2) the proposed method with three HPFs achieves 100% accuracy, although the NIs undergo a JPEG compression with a quality factor of 75.
Identifier
85045951181 (Scopus)
Publication Title
Sensors Switzerland
External Full Text Location
https://doi.org/10.3390/s18041296
ISSN
14248220
PubMed ID
29690629
Issue
4
Volume
18
Grant
2017C01062
Fund Ref
Key Technology Research and Development Program of Shandong
Recommended Citation
    Yao, Ye; Hu, Weitong; Zhang, Wei; Wu, Ting; and Shi, Yun Qing, "Distinguishing computer-generated graphics from natural images based on sensor pattern noise and deep learning" (2018). Faculty Publications.  8712.
    
    
    
        https://digitalcommons.njit.edu/fac_pubs/8712
    
 
				 
					