Single-bubble water boiling on small heater under Earth’s and low gravity
Document Type
Article
Publication Date
12-1-2018
Abstract
Today’s trends for enhancing boiling heat transfer in terrestrial and space applications focus on removal of bubbles to prevent formation of a vapor layer over the surface at high overheat. In contrast, this paper presents a new boiling regime that employs a vapor–air bubble residing on a small heater for minutes and driving cold water over the surface to provide high heat flux. Single-bubble boiling of water was investigated under normal gravity and low gravity in parabolic flights. Experiments demonstrated a negligible effect of gravity level on the rate of heat transfer from the heater. Due to self-adjustment of the bubble size, the heat flux provided by boiling rose linearly up with increasing heater temperature and was not affected by a gradually rising water temperature. The fast response and stable operation of single-bubble boiling over a broad range of temperatures pave the way for development of new devices to control heat transfer by forming surface domains with distinct thermal properties and wettability. The bubble lifetime can be adjusted by changing the water temperature. The ability of heating water on millimeter scales far above 100 °C without an autoclave or a powerful laser provides a new approach for processing of biomaterials and chemical reactions.
Identifier
85056083833 (Scopus)
Publication Title
Npj Microgravity
External Full Text Location
https://doi.org/10.1038/s41526-018-0055-y
e-ISSN
23738065
Issue
1
Volume
4
Grant
NNX12AM26G
Fund Ref
National Aeronautics and Space Administration
Recommended Citation
Elele, Ezinwa; Shen, Yueyang; Tang, John; Lei, Qian; and Khusid, Boris, "Single-bubble water boiling on small heater under Earth’s and low gravity" (2018). Faculty Publications. 8189.
https://digitalcommons.njit.edu/fac_pubs/8189
