Fully dynamic maximal independent set with sublinear in N update time

Document Type

Conference Proceeding

Publication Date

1-1-2019

Abstract

The first fully dynamic algorithm for maintaining a maximal independent set (MIS) with update time that is sublinear in the number of edges was presented recently by the authors of this paper [Assadi et al. , STOC’18]. The algorithm is deterministic and its update time is O(m3/4), where m is the (dynamically changing) number of edges. Subsequently, Gupta and Khan and independently Du and Zhang [arXiv, April 2018] presented deterministic algorithms for dynamic MIS with update times of O(m2/3) and O(m2/3 log m), respectively. Du and Zhang also gave a randomized algorithm with update time Oe(m). Moreover, they provided some partial (conditional) hardness results hinting that the update time of m1/2−ε, and in particular n1−ε for n-vertex dense graphs, is a natural barrier for this problem for any constant ε > 0, for deterministic and randomized algorithms that satisfy a certain natural property. In this paper, we break this natural barrier and present the first fully dynamic (randomized) algorithm for maintaining an MIS with update time that is always sublinear in the number of vertices, namely, an Oe(n) expected amortized update. We also show that a simpler variant of our algorithm can already achieve an Oe(m1/3) expected amortized update time, which results in an improved performance over our Oe(n) update time algorithm for sufficiently sparse graphs, and breaks the m1/2 barrier of Du and Zhang for all values of m.

Identifier

85066948690 (Scopus)

Publication Title

Proceedings of the Annual ACM SIAM Symposium on Discrete Algorithms

External Full Text Location

https://doi.org/10.1137/1.9781611975482.116

First Page

1919

Last Page

1936

This document is currently not available here.

Share

COinS