New fractional nonlinear integrable Hamiltonian systems
Document Type
Article
Publication Date
2-1-2019
Abstract
We have constructed a new fractional pseudo-differential metrized operator Lie algebra on the axis, enabling within the general Adler–Kostant–Symes approach the generation of infinite hierarchies of integrable nonlinear differential-fractional Hamiltonian systems of Korteweg–de Vries, Schrödinger and Kadomtsev–Petviashvili types. Using the natural quasi-classical approximation of the metrized fractional pseudo-differential operator Lie algebra, we construct a new metrized fractional symbolic Lie algebra and related infinite hierarchies of integrable mutually commuting fractional symbolic Hamiltonian flows, modeling Benney type hydrodynamical systems.
Identifier
85052904233 (Scopus)
Publication Title
Applied Mathematics Letters
External Full Text Location
https://doi.org/10.1016/j.aml.2018.08.009
e-ISSN
18735452
ISSN
08939659
First Page
41
Last Page
49
Volume
88
Grant
F-2/370/2018/DS
Recommended Citation
Hentosh, Oksana Ye; Kyshakevych, Bohdan Yu; Blackmore, Denis; and Prykarpatski, Anatolij K., "New fractional nonlinear integrable Hamiltonian systems" (2019). Faculty Publications. 7818.
https://digitalcommons.njit.edu/fac_pubs/7818
