A multi-purpose image forensic method using densely connected convolutional neural networks
Document Type
Article
Publication Date
3-1-2019
Abstract
Multi-purpose forensics is attracting increasing attention worldwide. In this paper, we propose a multi-purpose method based on densely connected convolutional neural networks (CNNs) for simultaneous detection of 11 different types of image manipulations. An efficient CNN structure has been specifically designed for forensics by considering vital architecture components, including the number of convolutional layers, the size of convolutional kernels, the nonlinear activations, and the type of pooling layer. The dense connectivity pattern, which has better parameter efficiency than the traditional pattern, is explored to strengthen the propagation of features related to image manipulation detection. When compared with four state-of-the-art methods, our experiments demonstrate that the proposed CNN architecture can achieve better performance in multiple operation detections for different image sizes, especially on small image patches. Consequently, the proposed method can accurately detect local image manipulations. The proposed method can achieve better overall performance when tested on different databases as well as better robustness against JPEG compression even under low-quality JPEG compression.
Identifier
85063060341 (Scopus)
Publication Title
Journal of Real Time Image Processing
External Full Text Location
https://doi.org/10.1007/s11554-019-00866-x
e-ISSN
18618219
ISSN
18618200
First Page
725
Last Page
740
Issue
3
Volume
16
Grant
U1536204
Fund Ref
National Natural Science Foundation of China
Recommended Citation
Chen, Yifang; Kang, Xiangui; Shi, Yun Q.; and Wang, Z. Jane, "A multi-purpose image forensic method using densely connected convolutional neural networks" (2019). Faculty Publications. 7752.
https://digitalcommons.njit.edu/fac_pubs/7752