On the Capacity of Private Nonlinear Computation for Replicated Databases
Document Type
Conference Proceeding
Publication Date
8-1-2019
Abstract
We consider the problem of private computation (PC) in a distributed storage system. In such a setting a user wishes to compute a function of f messages replicated across n noncolluding databases, while revealing no information about the desired function to the databases. We provide an information-theoretically accurate achievable PC rate, which is the ratio of the smallest desired amount of information and the total amount of downloaded information, for the scenario of nonlinear computation. For a large message size the rate equals the PC capacity, i.e., the maximum achievable PC rate, when the candidate functions are the f independent messages and one arbitrary nonlinear function of these. When the number of messages grows, the PC rate approaches an outer bound on the PC capacity. As a special case, we consider private monomial computation (PMC) and numerically compare the achievable PMC rate to the outer bound for a finite number of messages.
Identifier
85081109977 (Scopus)
ISBN
[9781538669006]
Publication Title
2019 IEEE Information Theory Workshop Itw 2019
External Full Text Location
https://doi.org/10.1109/ITW44776.2019.8989267
Grant
CNS-1526547
Fund Ref
National Science Foundation
Recommended Citation
Obead, Sarah A.; Lin, Hsuan Yin; Rosnes, Eirik; and Kliewer, Jorg, "On the Capacity of Private Nonlinear Computation for Replicated Databases" (2019). Faculty Publications. 7417.
https://digitalcommons.njit.edu/fac_pubs/7417
