An efficient deep belief network with fuzzy learning for nonlinear system modeling
Document Type
Conference Proceeding
Publication Date
10-1-2019
Abstract
A deep belief network (DBN) is one of the most effective ways to realize a deep learning technique, and has been attracting more and more attentions in nonlinear system modeling. However, it can not provide satisfactory results in learning speed and modeling accuracy, which is mainly caused by gradient diffusion. To address these problems and promote its development in cross-models, we propose an efficient DBN with a fuzzy neural network (DBFNN) for nonlinear system modeling. In this novel framework, DBN is considered as a pre-training technique to realize fast weight-initialization and to obtain a feature-representation vector. An FNN-based learning framework is developed for supervised modeling so as to eliminate the gradient diffusion issue, where its input happens to be the feature-representation vector. As a novel cross-model, DBFNN combines the advantages of both pre-training technique of DBN and an FNN model to improve nonlinear system modeling capability. A classical benchmark problem is used to demonstrate its superiority over existing single-models in learning speed and modeling accuracy.
Identifier
85076779929 (Scopus)
ISBN
[9781728145693]
Publication Title
Conference Proceedings IEEE International Conference on Systems Man and Cybernetics
External Full Text Location
https://doi.org/10.1109/SMC.2019.8914608
ISSN
1062922X
First Page
3549
Last Page
3554
Volume
2019-October
Grant
61533002
Fund Ref
Innovative Research Group Project of the National Natural Science Foundation of China
Recommended Citation
Wang, Gongming; Qiao, Junfei; Bi, Jing; and Zhou, Mengchu, "An efficient deep belief network with fuzzy learning for nonlinear system modeling" (2019). Faculty Publications. 7302.
https://digitalcommons.njit.edu/fac_pubs/7302
