A volume of fluid method for simulating fluid/fluid interfaces in contact with solid boundaries
Document Type
Article
Publication Date
8-1-2015
Abstract
In this paper, we present a novel approach to model the fluid/solid interaction forces in a direct solver of the Navier-Stokes equations based on the volume of fluid interface tracking method. The key ingredient of the model is the explicit inclusion of the fluid/solid interaction forces into the governing equations. We show that the interaction forces lead to a partial wetting condition and in particular to a natural definition of the equilibrium contact angle. We present two numerical methods to discretize the interaction forces that enter the model; these two approaches differ in complexity and convergence. To validate the computational framework, we consider the application of these models to simulate two-dimensional drops at equilibrium, as well as drop spreading. We demonstrate that the model, by including the underlying physics, captures contact line dynamics for arbitrary contact angles. More generally, the approach permits novel means to study contact lines, as well as a diverse range of phenomena that previously could not be addressed in direct simulations.
Identifier
84927517918 (Scopus)
Publication Title
Journal of Computational Physics
External Full Text Location
https://doi.org/10.1016/j.jcp.2015.03.051
e-ISSN
10902716
ISSN
00219991
First Page
243
Last Page
257
Volume
294
Grant
1235710
Fund Ref
National Science Foundation
Recommended Citation
Mahady, Kyle; Afkhami, Shahriar; and Kondic, Lou, "A volume of fluid method for simulating fluid/fluid interfaces in contact with solid boundaries" (2015). Faculty Publications. 6863.
https://digitalcommons.njit.edu/fac_pubs/6863
