Competitive two-agent scheduling and its applications

Document Type

Article

Publication Date

1-1-2010

Abstract

We consider a scheduling environment with m (m≥ 1) identical machines in parallel and two agents. Agent A is responsible for n1 jobs and has a given objective function with regard to these jobs; agent B is responsible for n 2 jobs and has an objective function that may be either the same or different from the one of agent A. The problem is to find a schedule for the n1 + n2 jobs that minimizes the objective of agent A (with regard to his n 1 jobs) while keeping the objective of agent B (with regard to his n2 jobs) below or at a fixed level Q. The special case with a single machine has recently been considered in the literature, and a variety of results have been obtained for two-agent models with objectives such as f max, ∑wjCj , and ∑Uj . In this paper, we generalize these results and solve one of the problems that had remained open. Furthermore, we enlarge the framework for the two-agent scheduling problem by including the total tardiness objective, allowing for preemptions, and considering jobs with different release dates; we consider also identical machines in parallel. We furthermore establish the relationships between two-agent scheduling problems and other areas within the scheduling field, namely rescheduling and scheduling subject to availability constraints. ©2010 INFORMS.

Identifier

77951147055 (Scopus)

Publication Title

Operations Research

External Full Text Location

https://doi.org/10.1287/opre.1090.0744

e-ISSN

15265463

ISSN

0030364X

First Page

458

Last Page

469

Issue

2

Volume

58

This document is currently not available here.

Share

COinS