Automated modeling of dynamic reliability block diagrams using colored Petri nets

Document Type

Article

Publication Date

3-1-2010

Abstract

Computer system reliability is conventionally modeled and analyzed using techniques such as fault tree analysis and reliability block diagrams (RBDs), which provide static representations of system reliability properties. A recent extension to RBDs, called dynamic RBDs (DRBD), defines a framework for modeling the dynamic reliability behavior of computer-based systems. However, analyzing a DRBD model in order to locate and identify design errors, such as a deadlock error or faulty state, is not trivial when done manually. A feasible approach to verifying it is to develop its formal model and then analyze it using programmatic methods. In this paper, we first define a reliability markup language that can be used to formally describe DRBD models. Then, we present an algorithm that automatically converts a DRBD model into a colored Petri net. We use a case study to illustrate the effectiveness of our approach and demonstrate how system properties of a DRBD model can be verified using an existing Petri net tool. Our formal modeling approach is compositional; thus, it provides a potential solution to automated verification of DRBD models. © 2009 IEEE.

Identifier

77249146348 (Scopus)

Publication Title

IEEE Transactions on Systems Man and Cybernetics Part A Systems and Humans

External Full Text Location

https://doi.org/10.1109/TSMCA.2009.2034837

ISSN

10834427

First Page

337

Last Page

351

Issue

2

Volume

40

This document is currently not available here.

Share

COinS