Attribute Propagation Enhanced Community Detection Model for Bitcoin De-anonymizing
Document Type
Conference Proceeding
Publication Date
1-1-2020
Abstract
Bitcoin is a kind of decentralized cryptocurrency on a peer-to-peer network. Anonymity makes Bitcoin widely used in online payment but it is a disadvantage for regulatory purposes. We aim to de-anonymize Bitcoin to assist regulation. Many previous studies have used heuristic clustering or machine learning to analyze historical transactions and identify user behaviors. However, the accuracy of user identification is not ideal. Heuristic clustering only uses the topological structure of the transaction graph and ignores many transaction information, and supervised machine learning methods are limited by the size of labeled datasets. To identify user behaviors, we propose a community detection model based on attribute propagation, combining the topological structure of the transaction graph and additional transaction information. We first parse the transaction data of public ledger and construct a bipartite graph to describe correlations between addresses and transactions. We also extract address attributes from historical transactions to construct an attributed graph with the previous bipartite graph. Then, we design an adaptive weighted attribute propagation algorithm named AWAP running on the attributed graph to classify bitcoin addresses, and further identify user behaviors. Extensive experiments highlight that the proposed detection model based on AWAP achieves 5% higher accuracy on average compared to state-of-the-art address classification methods in Bitcoin. AWAP also achieves 25% higher F-score on average compared to previous community detection algorithms on two datasets.
Identifier
85097168711 (Scopus)
ISBN
[9783030622220]
Publication Title
Lecture Notes in Computer Science Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics
External Full Text Location
https://doi.org/10.1007/978-3-030-62223-7_53
e-ISSN
16113349
ISSN
03029743
First Page
607
Last Page
622
Volume
12486 LNCS
Recommended Citation
Wang, Jiming; Xie, Xueshuo; Fang, Yaozheng; Lu, Ye; Li, Tao; and Wang, Guiling, "Attribute Propagation Enhanced Community Detection Model for Bitcoin De-anonymizing" (2020). Faculty Publications. 5657.
https://digitalcommons.njit.edu/fac_pubs/5657
