Magnetic transitions in exotic perovskites stabilized by chemical and physical pressure
Document Type
Article
Publication Date
4-21-2020
Abstract
Exotic perovskites significantly enrich materials for multiferroic and magnetoelectric applications. However, their design and synthesis is a challenge due to the mostly required recipe conditions at extremely high pressure. Herein, we presented the Ca2-xMnxMnTaO6 (0 ≤ x ≤ 1.0) solid solutions stabilized by chemical pressure assisted with intermediate physical pressure up to 7 GPa. The incorporation of Mn2+ into the A-site neither drives any cationic ordering nor modifies the orthorhombic Pbnm structure, namely written as (Ca1-x/2Mnx/2)(Mn1/2Ta1/2)O3 with disordered A and B site cationic arrangements. The increment of x is accompanied by a ferromagnetic to antiferromagnetic transition around x = 0.2, which is attributed to the double-exchange interactions between A-site Mn2+ and B-site Mn3+. Partial charge disproportionation of the B-site Mn3+ into Mn2+ and Mn4+ occurs for x above 0.8 samples as manifested by X-ray spectrum and magnetic behaviors. The coexistence of B-site Mn3+ (Jahn-Teller distortion ion) and B′-site Ta5+ (second-order Jahn-Teller distortion ion) could be energetically responsible for the absence of A-site columnar ordering as observed in other quadruple perovskites with half of the A-sites occupied by small transition-metal cations. These exceptional findings indicate that exotic perovskites can be successfully stabilized at chemical and intermediate physical pressure, and the presence of Jahn-Teller distortion cations at the same lattice should be avoided to enable cationic ordering.
Identifier
85083737348 (Scopus)
Publication Title
Journal of Materials Chemistry C
External Full Text Location
https://doi.org/10.1039/c9tc06976c
e-ISSN
20507526
ISSN
20507534
First Page
5082
Last Page
5091
Issue
15
Volume
8
Grant
DE-SC0012704
Fund Ref
National Science Foundation
Recommended Citation
Ma, Yalin; Molokeev, Maxim S.; Zhu, Chuanhui; Zhao, Shuang; Han, Yifeng; Wu, Meixia; Liu, Sizhan; Tyson, Trevor A.; Croft, Mark; and Li, Man Rong, "Magnetic transitions in exotic perovskites stabilized by chemical and physical pressure" (2020). Faculty Publications. 5347.
https://digitalcommons.njit.edu/fac_pubs/5347
