Morphology, performance and fluid dynamics of the crayfish escape response
Document Type
Article
Publication Date
8-1-2020
Abstract
Sexual selection can result in an exaggerated morphology that constrains locomotor performance. We studied the relationship between morphology and the tail-flip escape response in male and female rusty crayfish (Faxonius rusticus), a species in which males have enlarged claws (chelae). We found that females had wider abdomens and longer uropods (terminal appendage of the tail fan) than males, while males possessed deeper abdomens and larger chelae, relative to total length. Chelae size was negatively associated with escape velocity, whereas longer abdomens and uropods were positively associated with escape velocity. We found no sex-specific differences in maximum force generated during the tail flip, but uropod length was strongly, positively correlated with tail-flip force in males. Particle image velocimetry (PIV) revealed that the formation of a vortex, rather than the expulsion of fluid between two closing body surfaces, generates propulsion in rusty crayfish. PIV also revealed that the pleopods (ventral abdominal appendages) contribute to the momentum generated by the tail. To our knowledge, this is the first confirmation of vortex formation in a decapod crustacean.
Identifier
85089162009 (Scopus)
Publication Title
Journal of Experimental Biology
External Full Text Location
https://doi.org/10.1242/jeb.219873
e-ISSN
14779145
ISSN
00220949
PubMed ID
32561629
Issue
15
Volume
223
Recommended Citation
Hunyadi, Jocelyn; Currier, Todd; Modarres-Sadeghi, Yahya; Flammang, Brooke E.; and Clotfelter, Ethan D., "Morphology, performance and fluid dynamics of the crayfish escape response" (2020). Faculty Publications. 5127.
https://digitalcommons.njit.edu/fac_pubs/5127
