"Nanobubble-enabled foam fractionation to remove algogenic odorous micr" by Yihan Zhang, Shan Xue et al.
 

Nanobubble-enabled foam fractionation to remove algogenic odorous micropollutants

Document Type

Article

Publication Date

12-1-2024

Abstract

Due to climate change and environmental pollution, natural lakes and reservoir water suffer increasingly serious algal blooms and associated water quality problems due to the presence of algal or algogenic organic matter (AOM) such as algal odour and toxins. Effective removal of these micropollutants, especially in the event of algal blooms, is critical to aesthetic values of water bodies, drinking water security and human health. The study investigated the removal efficiency of two common odorous compounds, trans-1,10-dimethyl-trans-9-decalol (geosmin) and 2-Methylisoborneol (2-MIB), using foam fractionation enabled by air nanobubbles with addition of two common cationic and anionic surfactants, sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB), to enhance foaming ability and stability. The results showed that the cationic surfactant (i.e., CTAB), a low pH, and high ionic strength significantly promoted the removal of geosmin and 2-MIB. For example, the removal tests using the synthetic water determined that the conditions of pH = 7, [CTAB] = 20 mg·L−1 and IS = 10 mM as NaCl resulted in both the highest geosmin removal rate of 91.81% and highest 2-MIB removal rate of 85.0%. The removal of two odorous compounds in real lake water was evaluated, which yielded removal rates of 83.2% for geosmin and 48.1% for 2-MIB, highlighting the minor inhibition from water matrixes on the removal performances. Compared to microbubbles, nanobubbles enabled greater surface areas of foam and higher removal efficiencies. The study provided new insights into the use of foam fractionation with air nanobubbles to enhance the removal of odorous compounds from impaired water and mitigate the negative environmental and health impacts of harmful algal blooms (HABs).

Identifier

85205323139 (Scopus)

Publication Title

Water Research

External Full Text Location

https://doi.org/10.1016/j.watres.2024.122540

e-ISSN

18792448

ISSN

00431354

PubMed ID

39357160

Volume

267

Grant

NA22NOS4780172

Fund Ref

Mote Marine Laboratory and Aquarium

This document is currently not available here.

Plum Print visual indicator of research metrics
PlumX Metrics
  • Citations
    • Citation Indexes: 1
  • Usage
    • Abstract Views: 1
  • Captures
    • Readers: 10
see details

Share

COinS