Gauging van der Waals interactions in aqueous solutions of 2D MOFs: when water likes organic linkers more than open-metal sites
Document Type
Article
Publication Date
1-28-2021
Abstract
Molecular dynamics simulations combined with periodic electronic structure calculations are performed to decipher structural, thermodynamical and dynamical properties of the interfacedvs.confined water adsorbed in hexagonal 1D channels of the 2D layered electrically conductive Cu3(HHTP)2and Cu3(HTTP)2metal-organic frameworks (HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene and HTTP = 2,3,6,7,10,11-hexathiotriphenylene). Comparing water adsorption in bulkvs.slab models of the studied 2D MOFs shows that water is preferentially adsorbed on the framework wallsviaforming hydrogen bonds to the organic linkers rather than by coordinating to the coordinatively unsaturated open-Cu2+sites. Theory predicts that in Cu3(HTTP)2the van der Waals interactions are stronger which helps the MOF maintain its layered morphology with allowing very little water molecules to diffuse into the interlayer space. Data presented in this work are general and helpful in implementing new strategies for preserving the integrity as well as electrical conductivity of porous materials in aqueous solutions.
Identifier
85100573515 (Scopus)
Publication Title
Physical Chemistry Chemical Physics
External Full Text Location
https://doi.org/10.1039/d0cp05923d
ISSN
14639076
PubMed ID
33491712
First Page
3135
Last Page
3143
Issue
4
Volume
23
Grant
CHE200007
Fund Ref
National Science Foundation
Recommended Citation
Momeni, Mohammad R.; Zhang, Zeyu; Dell'Angelo, David; and Shakib, Farnaz A., "Gauging van der Waals interactions in aqueous solutions of 2D MOFs: when water likes organic linkers more than open-metal sites" (2021). Faculty Publications. 4373.
https://digitalcommons.njit.edu/fac_pubs/4373