Functionalized carbon nanotube doped gel electrolytes with enhanced mechanical and electrical properties for battery applications
Document Type
Article
Publication Date
5-1-2021
Abstract
We report the functionalized carbon nanotubes (fCNTs) and graphene oxide (GO) doped polyvinyl alcohol (PVA) based gel electrolytes (GEs). The multiwalled carbon nanotubes (CNTs) were treated via microwave irradiation to alter the degree of carboxylation. The fCNT doped gel electrolyte (fCNTGE) showed significantly improved ionic conductivity, mechanical strength as well as electrochemical stability when compared to the pure GE and graphene oxide doped gel electrolyte (GOGE). The homogeneous distribution of ionic channels provided by fCNTs served as redox shuttle and facilitated the ion migration in the gel. The fCNTGE exhibited the best performance when the oxygen content was 12.8% by weight. The ionic conductivity was significantly improved by introducing fCNTs into the PVA gel and reached 6.9 × 10−2 S cm−1, revealing that the diffusion and transport of ions into electrolyte were much better than the GE and GOGE. A significant enhancement in the gel mechanical properties was observed as the Young's module (E = 2.3) and tensile strength (22.3 kPa) of fCNTGE was higher than that of GE and GOGE. Furthermore, the composite Zn–Ag2O batteries were made and tested using the fCNTGE, GE, and GOGE in the 3D-printed battery casings. The fCNTGE based batteries demonstrated good electrochemical stability with specific capacity reaching 204.3 mAh g−1 (C/20).
Identifier
85101877180 (Scopus)
Publication Title
Materials Chemistry and Physics
External Full Text Location
https://doi.org/10.1016/j.matchemphys.2021.124448
ISSN
02540584
Volume
264
Recommended Citation
Karaman, Emine S.; Wang, Zhiqian; Chen, Kun; Siddiqui, Zain; Cheng, Yu Hsuan; Basuray, Sagnik; Kumar, Vivek; and Mitra, Somenath, "Functionalized carbon nanotube doped gel electrolytes with enhanced mechanical and electrical properties for battery applications" (2021). Faculty Publications. 4126.
https://digitalcommons.njit.edu/fac_pubs/4126