Boron-Rich Composite Thermite Powders with Binary Bi2O3·CuO Oxidizers
Document Type
Article
Publication Date
6-17-2021
Abstract
Mixed oxide powders of Bi2O3 and CuO were prepared by mechanical milling as well as calcination of mixed nitrates. Arrested reactive milling was used to prepare boron-rich thermite composite powders with a constant equivalence ratio using these mixed oxides as oxidizers. Thermal analysis showed lower reaction onset temperatures for exothermic reactions and a greater energy release for these binary oxidizer energetic composites compared to composites with the same equivalence ratio but using either Bi2O3 or CuO as the oxidizer. The greatest effect was observed for a mixed oxidizer with 25 wt % Bi2O3. Heated filament ignition tests showed that the ignition temperatures for all mixed oxidizer composites are higher than those measured for the composites with individual Bi2O3 but lower than those for the composites with individual CuO serving as oxidizers. A weak trend of increasing ignition temperatures as the CuO content of the binary oxidizer increases is noted. Correlations between thermal analysis and ignition experiments suggest the early oxidation onset as the reaction leads to ignition. Particle burn times as determined by laser-ignited single particle combustion tests are near 400 μs for 1 μm particles, less than for similarly sized pure boron, but with no discernible effect of oxidizer composition.
Identifier
85108427945 (Scopus)
Publication Title
Energy and Fuels
External Full Text Location
https://doi.org/10.1021/acs.energyfuels.1c01052
e-ISSN
15205029
ISSN
08870624
First Page
10327
Last Page
10338
Issue
12
Volume
35
Grant
N00014-19-1-2048
Fund Ref
Office of Naval Research
Recommended Citation
Valluri, Siva Kumar; Gandhi, Purvam Mehulkumar; Schoenitz, Mirko; and Dreizin, Edward L., "Boron-Rich Composite Thermite Powders with Binary Bi2O3·CuO Oxidizers" (2021). Faculty Publications. 4037.
https://digitalcommons.njit.edu/fac_pubs/4037