Diffusion adaptive filtering algorithm based on the Fair cost function
Document Type
Article
Publication Date
12-1-2021
Abstract
To better perform distributed estimation, this paper, by combining the Fair cost function and adapt-then-combine scheme at all distributed network nodes, a novel diffusion adaptive estimation algorithm is proposed from an M-estimator perspective, which is called the diffusion Fair (DFair) adaptive filtering algorithm. The stability of the mean estimation error and the computational complexity of the DFair are theoretically analyzed. Compared with the robust diffusion LMS (RDLMS), diffusion Normalized Least Mean M-estimate (DNLMM), diffusion generalized correntropy logarithmic difference (DGCLD), and diffusion probabilistic least mean square (DPLMS) algorithms, the simulation experiment results show that the DFair algorithm is more robust to input signals and impulsive interference. In conclusion, Theoretical analysis and simulation results show that the DFair algorithm performs better when estimating an unknown linear system in the changeable impulsive interference environments.
Identifier
85116470722 (Scopus)
Publication Title
Scientific Reports
External Full Text Location
https://doi.org/10.1038/s41598-021-99330-9
e-ISSN
20452322
PubMed ID
34611242
Issue
1
Volume
11
Grant
2021NQNCZ04
Fund Ref
National Outstanding Youth Science Fund Project of National Natural Science Foundation of China
Recommended Citation
Guan, Sihai; Cheng, Qing; Zhao, Yong; and Biswal, Bharat, "Diffusion adaptive filtering algorithm based on the Fair cost function" (2021). Faculty Publications. 3649.
https://digitalcommons.njit.edu/fac_pubs/3649
